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SUMMARY 

The use of Langmuir probes in ionized gas flows is investigated. 
the basic theory of electrostatic probes is investigated and the regimes in which 
the c i a s s i c d  iheoij; is q q l i c h l e  are noted: then a survey is made of l i terature  
which modifies the basic theory when the assumptions of classical  theory a r e  not 
met.  

probe theory to  a flowing ionized gas. 
possible sources  of e r r o r  are enumerated. 
as t o  when the classical  Langmuir probe can be used in an ionized gas flow, and 
the equations to  use it a r e  given where applicable. 

It is determined that in most ca ses  the classical  theory can be used, with 
the basic equations unmodified by the flow. In some cases  a modification is 
necessary  and the necessary equations are supplied. 

F i r s t  

A survey is then made of l i terature dealing with the application of basic 
The The modified equations a r e  given. 

Finally recommendations are made 

INTRODUCTION 

The use of an electrostatic probe technique to  measure  the charged par -  
t ic le  density and electron temperature in an ionized gas w a s  f i r s t  developed by 
Langmuir and Mott-Smith in 1924. 
"Langmuir Probe" has  been reexamined and developed by a number of investi- 
gators.  The '%lassical" Langmuir theory has not been modified very much as 
a resul t  of these investigations, but theories have been developed for using the 
probe techniques in circumstances which a r e  outside the l imits of the res t r ic -  
tions of c lass ical  theory. This paper i s  concerned with applying the classical  
theory to  measure  the parameters  of an ionized gas flow, on the assumption 
that it meets  the conditions imposed by the classical  theory. 

Since then the theory of the so-called 

The basic assumptions made in c lassical  probe theory are 
1. The sheath thickness d is much l e s s  than any mean free paths 

involved in the gas (i. e. neutral-neutral, ion-ion, electron-electron, 
ion- electron, ion- ne ut r al , electron- ne ut r al) . 
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2.  
3. 

The reason for  assumption 1 is that we want no collisions in the sheath, 
so that the current can be found by assuming that the collected par t ic les  a r e  in 
free-fall  to  the probe under action of the electric field. Assumptions 1, 2, and 
3 insure that the probe does not disturb the p lasma and so truly acts like a probe. 

a metallic surface (such as the end of a wire) which is inserted into the p lasma 
and collects charged particles f rom it. 
probe as a function of the potential applied to it,  one can determine the electron 
temperature ,  the electron and ion density, the floating potential, and the plasma 
potential, the last  two potentials with respect to an a rb i t ra ry  reference and with 
respect to  each other. 

The probe diair le tcr  a is much l e s s  than the mean free paths. 
The sheath thickness d must be much l e s s  than the probe dimen- 
sion a. 

In this paper w e  wi l l  consider the theory of a plane probe. This is usually 

By measuring the current  collected by the 

SYMBOLS 
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A 

de, i 
e 
f 
h 

i e ,  i 

j 

je ,  i 

"9 i sat .  
k 

m e ,  i 

M1 

n 

n 

S 

e,  i 

0 

Te, i 
V e ,  i 

probe diameter 

probe area 

thickness of electron and ion sheaths,  respectively 

electronic charge 

Maxwellian distribution function 

Debye length 

collected electron and ion cur ren ts ,  respectively 

total cur ren t  density 

electron and ion current  density, repectively 

saturation electron and ion current  density, respectively 

Bolt zmann constant 

electron and ion masses ,  repectively 

free  s t r eam Mach number 

electron and ion number density, repectively 

equlibrium electron and ion density in plasma 

speed ratio 

electron and ion temperatures ,  repectively 

electron and ion velocity in sheath, respectively 
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V io 

Y 

c O  

8 
x 
CPf 

ion velocity at sheath edge in case where T.<< T 

ratio of specific heats, -k 
permitivity of f ree  space 

1 e 

C 
V 

angle between flow direction and normal to  probe surface 

mean f ree  path 

floating potential of probe with respect  to an a rb i t ra ry  reference 
point 

potential of probe with respect to an arb i t ra ry  reference point 

plasma potential with respect to arbi t rary reference point 

potential of probe with respect to plasma potential 

kinetic energy of ions at sheath edge divided by electronic charge 
a n e  

0 ioii -,?asmz freqllency 
1 0  

QUALITATIVE DESCRIPTION OF PROBE CHARACTERISTIC 

Let rp be the potential of the probe with respect to some fixed refer-  
ence point, wfich is arbi t rary.  At the point cpp, which is called the plasma 
potential, the probe is at the same potential as the plasma. 
tial there  is no potential gradient between the probe and the plasma, no field 
exis ts ,  and the charged particles flow to  the probe because of their  thermal  
velocities. Since the ions a r e  much more  massive than the electrons,  they 
move much slower than the electrons, and the probe collects predominantly 
electron current  . 

If the potential is increased so that pg>$, the electrons a r e  accelerated 
toward the probe and the ions are  repelled so that the ion current  vanishes. 
Therefore an excess  of negative charge builds up near the probe surface until the 
total charge is equal to the positive charge on the probe. This layer  of charge i s  
called a sheath. 
l i t t le electric field and the plasma is undisturbed. 
usually, and i t  is this fact which makes the probe a t rue probe in  the sense that 
i t s  effect is not felt outside the sheath. The electron current  entering the sheath 
is that due to random thermal motions. A s  long a s  the sheath a r e a  remains con- 
stant, the current  entering it will be constant. 
change very much a s  a function of voltage, this condition i s  satisfied and the cur -  
rent levels off to an almost flat curve, region I of Figure l .  
ration current.  

is made less  than % , the probe begins to repel electrons 
and accelerate ions. gChen (reference 1) calls this region the transition region of 

' 

Since at this poten- 

It acts to shield the probe field so that outside of it there  i s  very 
This sheath is very thin 

Since the sheath a r e a  does not 

This is electron satu- 

As soon as 
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Figure 1. Typical Probe Characteristic 
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the characterist ic.  The electron current decreases  as cp decreases  in this 

were Maxwellian, the curve in region 11, neglecting the ion current ,  would be 
exponential. 
field i s  just  strong enough to  repel all electrons except for  a flux equal to the 
flux of ions, and therefore the net current i s  zero. If an insulated electrode were 
inserted into the plasma it  would assume this potential. 

almost all t%e electrons a re  repelled and an ion sheath is formed and a co r re s -  
ponding ion saturation current  is collected. 
this region is very s imilar  to  region I ,  with the exception of the mass  difference 
between the ions and electrons. It would seem that the current  collected is the 
current  due to random thermal motions of the ions. The next section will  demon- 
s t ra te  that sheath formation is  different when the colder species is collected, and 
the equation for the saturation current ( i f  thc ions are colder than the electrons) 
is not as simple as we would think. 

region which corresponds to region I1 of Figure 1. If the g electron distribution 

At the point vf ,  which is called the floating potential, the retarding 

If cp i s  decreased to a low enough value, we pass  into region 111 in which 

At first glance it would seem that 

Basic Theory 

In the theory that follows in Sections A, B, C, and D, we w i l l  assume that 
Te>>Ti. 
is t rue,  i. e. i f  Te<<Ti. 

In Section E we wi l l  discuss the modification to  the theory if the reverse  

A. Electron Saturation Current (cp - The saturation electron current ,  
which is the current  density due to motions entering the sheath,% 
given by Dickson (reference 2) as ( see  Appendix A) 

= - e n  0 Jg 
sat. je  

where this result  is a standard derivation of kinetic theory. 
rent i is given by 

The measured cur-  

e 

i = je  A 
e sat .  

where A i s  the a r e a  of the sheath. 
the probe, since this i s  very nearly always t rue,  although for very large potentials 
the sheath might become thick enough so that the a r e a  does change slightly. 
current  is space-charge limited, and the classical  Child-Langmuir l aw  for  space- 
charge limited current  flow may be used to relate the sheath thickness to  the poten- 
tial CP, where cp is defined as CP = cp -cp The expression, as given by Chen is 

We wi l l  assume that it is equal to the a r e a  of 

This 

g P' 
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(see Appendix B) 

where de is the electron sheath thickness. Since je saturation is constant, 

we note that de must vary as c p 4 ,  and in fact the expression for d is given 
by French (reference 3 )  a s  

3 

e 

Since the sheath thickness is the range over which the major  effect of the probe 
is felt,  a rough approximation for the sheath thickness is that it is of the order  
of magnitude of the classical  Debye length h of a plasma, where this is given , 

by French to be 

h dy e" n = 69. OF mete r s  (5) 

B. Ion Saturation Current (cp <<cp ) - One can write an expression 
ankhgous to the Eq. (1) for the c u r r g m d d e t o  the random thermal  motions of 
thh ions 

= 
o 2nmi sat .  Ji  

where n is the density of charged particles in the plasma, and where, since 
n =n in the plasma, we use n for both. We can also write the Child- 
Lanimuir  l aw for  the space-chagge limited ion cur ren t  density as 

0 
i 
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where di is the thickness of the ion sheath. Again di i s  found to be 

a - I C P  I di - 

It has been found that i f  the correct  value of n were substituted in (6) and we 
solved for  T. we would obtain values of T. w%ich a re  many o rde r s  of magnitude 
l a rge r  than d e  actual value as  determined 'by other means. 
e r r o r .  It has been found by several authors ( f i r s t  by Bohm in 1949) that when the 
ions are at a lower tc.;~lpft~qfv-- than the electrons, they must enter the sheath with 
an energy which depends on the electron temperature.  
energy grea te r  than or equal to ikT upon entering the sheath for a stable sheath 
t o  exist at all. 
form (6)  in order  to  find the number density of ions n . An approximate expres- 
sion for the saturation ion current  was fcc~c! by Bohmo Burhop and Massey (1949) 
and is given by 

Thus, Eq. (6) is in 

The ions must have an 

Thus in general the cion saturation current  cannot be used in the 

This expression gives an order  of magnitude check on the plasma density. In 
reality, the ion current  must depend on the probe voltage and there a r e  some 
theories f o r  i t ,  but all suffer from the fact that the electric field f rom the probe 
accelerates  ions f rom large distances and thus collisions and external electric 
fields could influence the probe current. 

as found that if condition ( 2 )  of the basic assumptions i s  not sat is-  
fied, i. e. if - 0, then the s uration currents  can sti l l  be found by multiplying Eqs.  (1) and a (9) by a factor?:. Thus, (1) becomes 

Chen 

and (9) becomes 

= -en 
sat .  j e  

en 

j i  2 4a sat. 



Chen does not state which mean f r ee  path 1 he means,  but physically it would 
appear to  be the ion-neutral and electron-neutral mean f ree  paths. 

C. Transition Region (CP <rp ) - This region is denoted by region 11 
on Figure 1. In this region all t e ions entering the sheath a r e  collected, and 
in addition, those electrons having energies in excess of e a r e  collected. 
F o r  a Maxwellian distribution of electrons the current  density is the same 
regardless  of the sheath and probe s izes  and even of the shape of the probe, 
according to  Chen. Let u s  assume such a Maxwellian distribution. Then, if the 
electron distribution is in thermal  equilibrium under the action of the potential 
gradient we know that the density follows the Boltzmann law 

ig-w 

- elcpl 
e kT n = n e  e 0 

and the distribution is sti l l  Maxwellian everywhere; only the density is changed 
by the potential. 

The random thermal  current  density striking the probe is then given by 

-2k.L 
j = j i + j e  = ji + je kTe (1  1) e 

sat. sat. 

Taking the logarithm of je we find that 

&n je  = Cnje + t n e  kTe = t n j ,  - -  e ICPI (12) 
kTe sat. sat. 

If we differentiate both sides with respect to  IcpI we see  that 

1 1 ,  600 

e T 
e 

Thus, if we plot h j e  against \ql( we should obtain a straight line of slope 

- r, so that by measuring this slope we a re  able to determine 

do in%eed obtain this straight line, we can assume tha t  our original assumption 
of Maxwellian distribution i s  co r rec t ,  a s  Dickson p o i n t s  ou t .  
not yield a straight line, on the other hand, we cannot s a y  for sure  that the 
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distribution is not Maxwellian, since other effects may affect the curve. If 
the distribution is not Maxwellian, then the preceding theory does not apply, 
and the probe readings wi l l  not yield any information concerning the electron 
temperature.  

just  obtained into the saturation current equation and solve for  n 
Eqs. ( l ) ,  (9), ( la)  o r  (9a), depending upon which current  was  measured and upon 
the appropriate conditions. 

which the flux of electrons and 1 5 : s  to the probe is equal, i. e. the cur ren t  is 
zero. We can solve f o r  ~p at that point. 

In order  to  determine n we substitute the value of Te which we have 
0' Thie can be 

0' 

D. Floating Potential (q =cp - The floating potential is the potential at 

where we use Eqs. (1) and (9) for  je and ji respectively 
sat. sat. 

elepl 

n m  e 

elepl 

n m  e 

Let us call  the value of, at floating potential . In t e r m s  of Tf and 9 as 
defined in Figure 1, q is given by P 

f 

cp; = cp- rp  f P  

and we note that it is negative. Solving (15) for we find that it is given by 

2m 
i Cn - rf ni e 

'TTe q ; =  - -  
2e 

We can rewrite (16) in the form 
t 

'pp = 'pr-'pf 



Thus, i f  we place an insulated probe into the plasma and we observe that i t  
reaches the potential CP 
calculate the potential 
by applying ( 17) in ( 16a). 

intersection of the extrapolations of the semi-log&ithmic plot of regions I and 
11. 

E. Modification if T. >> T - French has investigated the case where 1-e - the electrons are the colder species. 
cedure used to  find Te does not change at all. However, the arguments used 
in regions I and 111 a r e  now reversed. The electrons a r e  constrained to enter 
the sheath with an energy grea te r  than o r  equal to 4kT.. Thus, the electrons 
and ions reverse  roles. Eq. (1) can be applied to regibn 111 by replaceing Te 
and m by Ti and m .  respectively. Eq. (9) can be applied to region I by 
replacpng T 

perature  regimes. They a r e  

with respect to an arb i t ra ry  reference point, we can 
of the plasma with respect to the same reference point 

Another standard method of determining cp is to say that i t  i s  at the 

He found that in this situation the pro- 

1 with Ti and mi with m e e' 
Let us look at the rat io  of electron current  to  ion current  in both tem- 

en 2kTe 
0 Je -I-\ 

Thus we see  that by observing the ratio of the saturation cur ren ts  we can deter-  
mine which species is  at the higher temperature ,  the ions o r  the electrons.  
the ions a r e  the warmer species,  the saturation current  ra t io  will be l a rge r  than 
in the cold ion case by a factor 
dence with M. Abele that in order  for the ions to be considered the higher tem- 
perature  species,  the actual condition on Ti should be that Ti> 3 Te. 

When 

f . It has been pointed out in private correspon- 

me 

APPLICATION TO MEASUREMENTS IN A FLOWING IONIZED GAS 

Very little work has been done in the application of c lass ical  Langmuir 
probe theory in measuring the parameters  of an ionized gas flow. French has  
written a paper on probes in a very low density flowing plasma, where the probe 
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is very  small compared to  the neutral-neutral mean f ree  paths but can be 
ei ther  in continuum or free-molecule flow with respect to charged-particle 
collisions. Talbot ( reference 4) has attempted to analyze the problem of a 
probe placed at the stagnation point of a blunt body. It appears that he  has  
mistakenly used classical  probe theory where i t  is not directly applicable, 
but it s eems  that his equations can be modified so  as to  make his  method 
work. 

French points out that the essential change in probe theory due to 
having mass motion is that the energy of the ions will be non-isotropic. 
us define a quantity S ,  which French calls the speed ratio. He does not 
define what it represents ,  but it appears that it is the rat io  of the flow velocity 
to  the thermal  velocity. Because of the mass  difference between the ions and 
electrons,  the electron speed ratio is negligible compared to  the ion and atom 
speed ratios. Thus we expect the usual retarding field method to  find T to 
he unaffected by mass motion. 
probes,  one parallel  to  the flow and one transverbe.  
the flow, the probe theory should not change at all. 
and Ti>7T 
as before, $ut the par t  biased to collect electrons is uncertain because the 
reflected izns ca11se a n  increased density in front of the probe and because the 
electron COlleCtiQn depends on an effective ion temperature which can’t  be defincd. 
If S is the ion speed ratio,  j; is given by 

Let 

This can be checked by testing two identisal 
If the probe is p2Ta11p1 to 

If the probe is  t ransverse 
then the par t  of the characterist ic biased to  collections is the same 

‘sat. 

ji = en o JT - 2 n m .  b-sas inae  t s s in e f i  ( 1 t e r f sin 8 13 
s at. 

as derived by French, where 8 is  the angle between the normal to the probe sur -  
face and the flow direction. 
and the electron collection is the same as before, since S is s o  small for  the 
electrons.  He says that the density increase caused by the reflected ions will 
integrate out to to  zero around the probe. 

but they follow the ion concentration profile in order  to maintain plasma neutrality. 
The electron temperature  is not expected to  change very much in going through the 
shock front. When the probe is biased to  collect ions, no shock wi l l  form,  since 
the probe is a sink fo r  ions. An a rea  parallel  to the flow wi l l  cause no shock even 
when reflecting ions, and the electron current  can be used to  determine n The 0’ 
electron temperatures ,  when found for  t ransverse and parallel  probes,  can be 
compared to  determine to what extent the electron compression through the shock 
is isothermal.  
when reflecting ions. 
the normal shock relation 

In the case where Te>>Ti, ion collection is uncertain 

Since the electrons have a low speed rat io  they do not form a shock wave 

The t ransverse probe should measure  a higher plasma concentration 
The f r ee  s t ream density can be found approximately by using 
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French found that charged-particle collisions in the sheath did not 
influence his current  readings to any appreciable extent. He w a s  mainly 
concerned with placing a small  probe in a flow to determine the free s t ream 
parameters  without disturbing the flow, but the method should work if  the 
probe is placed on a body and the flow over the body is examined, except 
for  the possible modifications needed if the mean f ree  paths a r e  too small ,  
as discussed previously. 

probe theory. 
body ( large compared with the probe dimensions). 
re la te  the probe diameter to the mean free paths, but it appears that it i s  
much l a rge r ,  so that the classical  theory would have to  be used in the modified 
form as in (la) and (9a)Jin order  to find the ion density. 

much thinner than any of the mean free paths involved, and the electron tem- 
perature  is assumed to  be much higher than the ion temperature.  
and electron temperature a r e  found from the current  versus  voltage character-  
ist ic in the usual way. 
of the sheath, a height d above the surface. 
solution for stagnation point boundary layer  flow and matches it to the sheath 
solution, since he knows the ion concentration and electron temperature at 
y = d ,  and these a re  the boundary conditions. From the standard flow analy- 
sis and shock relations he deduces the f ree  s t ream parameters .  

first place, as previously mentioned, he applies the classical  probe equations 
even though h is  probe diameter is much la rger  than the mean f ree  paths. 
explained above, this can be corrected by using the modified saturation current  
relations. Secondly, he insis ts  upon using the saturation ion current  to deter-  
mine the density, but without the cor rec t  modifications as derived by Bohm and 
numerous others. His reasoning is that the ion thermal  current  should be limited 
by the f ree  s t ream ion current  and not by the electron temperature.  This may be 
the case ,  but he applies the equation fo r  ion thermal  current  involving T. ,  which 
is known to be incorrect.  
rent because it might be too much of a drain on the plasma. 
of investigators use the electron current  measurement and obtain reasonably 
good resul ts ,  and it is felt that Talbot's method would work with that modifi- 
cation. 

In Talbot's stagnation point probe, he attempts to  apply classical  
He has  a probe buried in the stagnation point of a large blunt 

Talbot doesn't specifically 

The determination of 
the e I ectron temperature is the same as before. The sheath is assumed to be 

The density 

and Te at the outer edge 
He &en takes the already known 

This gives the values of n 

The analysis by Talbot seems to be inconsistent in two respects.  In the 

As ' 

Talbot says that he does not want to  use electrbn cur -  
The large majority 

The effect of mass  motion does not affect the theory in  the case  of Talbot's 
probe because the flow velocities (and thus the speed ratios) . _  of all the species 
a r e  very low that far down in the boundary layer.  

Some papers have been published concerning the use of the stagnation 
point probe in the case of a high density flow, where the mean f ree  paths a r e  
much smaller  than the sheath thickness. 
Chung at  Aerospace Corporation, and by Pollin ( re ference  5 )  at the Harry Diamond 
Laboratories.  
nated and the classical  f ree-fal l  relations cannot be applied. 
cerned in this paper with situations in which the f ree- fa l l  relations do apply. 

The most notable is the work done by 

In this case the current  flow through the sheath i s  collision domi- 
We a r e  only con- 
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SOURCES O F  ERROR 

Wehner and Medicus (reference 6 )  have written an excellent paper 
enumerating several  of the possible sources  of e r r o r  in making and inter-  
preting probe measurements.  Some of these sources,  as enumerated by 
Loeb, (reference 7) are:  

a) If the probe is  l a rge r  than the sheath thickness it disturbs the 
plasma, and the modification given is only a rough approximation. 

b) The strongly negative probe disturbs the plasma at the sheath 
edge, the measurement is not of undisturbed plasma. 

c) It is assumed that all c a r r i e r s  entering the sheath surface wi l l  
reach the probe and register as current,  and that only such c a r r i e r s  as 
represent  the original plasma outside the sheath wi l l  reach the probe and 
yield probe current.  
the more  negative the probe and the thicker the sl1c:dth. 
a r e  

some electrons from the probe 

accommodation coefficient) 

and high energy photons 

sheath and secondary electrons liberated from the metar surface by positive 
ion and meta-stable atom impact. 

5) hot probes emitting thermionically also can cause this. 

The report  by Wiener and Medicus discusses this problem in great  
detail, and shows how to recognize and compensate for some of the effects. 

d) contact potential differences between reference electrode and probe 
can falsify some readings. 

e) The theory given assumes only electrons and positive ions to be 
ca r r i e r s .  If there were negative ions i t  would not hold. 

f)  P l a sma  oscillations can throw the probe curve off. 
g) A non-maxwellian distribution can make the resul ts  invalid. 

This condition is not fulfilled and the failure is greater ,  
Thc possible c a u s e s  

1) collisions of electrons with molecules in the sheath which direct  

2 )  rzflectioc of electrons and ions from the probe surface (low 

3) current  caused by ionization in the sheath due to electron impact 

4) emission of electrons by the probe surface due to photons from the 
’ 

CONCLUSIONS 

It i s  concluded that classical  Langmuir probe theory can be applied to 
ionized gas flows a s  long as the restrictions imposed by classical  theory a r e  
satisfied, i. e. the relations between probe size and sheath thickness to mean 
f r ee  path. It w i l l  apply exactly as derived for a static plasma i f  the probe 
surface is parallel  to  the flow direction. If it is not parallel ,  the modified 
formula derived by French may be applied (for the case of higher ion tem- 
peratures)  or else  the usual formula for T <<Ti. Since the lower temperature 
species saturation current i s  uncertain, it i s  always wise to use the higher 
temperature  species saturation current  to  determine the density when possible. 
The method described can be applied to determine which species is hotter. 

e 

In 
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the case  of Te=Ti,  no Bohm condition is necessary.  

techniques is that local measurements can be made at a point. 
other methods, such as spectroscopy or microwave propagation, supply infor- 
mation averaged over a large volume of plasma. The plot of current  versus  
voltage may be obtained continuously in a steady state plasma flow, o r  point 
by point in a pulsed flow, the probe bias being changed from pulse to  pulse, o r  
the ent i re  curve may be obtained in a few microseconds in a pulsed flow by the 
use of a fastsweeping voltage so rce.  
the probe to  be of the order  of w- where w 

this is so low that fo r  almost any conceivable sweep frequency the change in the 
sheath thickness can be assumed to  take place instantaneously. 

We expect, according to Loeb, that probes wi l l  yield fairly reliable 
electron temperatures (certainly order  of magnitude), and ion and electron 
densities of perhaps within half an order  of magnitude. 

The advantage of electrostatic probes over all other plasma diagnostic 
Almost all 

Chen has  estimated the time response of 

Pi 
Y is the ion plasma frequency, and 
P i  
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APPENDIX A. DERIVATION O F  THE?-IIIAL CURRENT DENSITY 

Let us  derive the expression for  the current  density entering the sheath 
due to the random thermal  motions of the charged particles.  
at the electron current ,  since the ion current  is exactly analogous. 

flows in the t x  direction. 
the electron charge density, and Tx is the average of the x-component of 
random thermal  velocity. 
integrating v with the distribution function over the range of velocities 
f r o m  0 to Q).x We assume a Maxwellian distribution, and the distribution 
function f is thus given by 

We need only look 

If the sheath surface is taken to l ie in the y-z  plane, then the current  
This current is given by -enoT; , where - eno is 

the 
Elemmtary  kinetic theory says  that Vk is given by 

where 3 i s  given by 

The current  density je is then given by 

= -en v fdv dv dv 
sat. 'e 

X 

(A-3) 

These integrals a r e  in standard forms that can be found i n  :-ny tr-bles of definite 
integrals,  and when evaluated yield the result  that 

(A-4)  
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APPENDIX B DERIVATION O F  CHILD-LANCMUIR LAW 

The following derivation of the Child-Langmuir law for  space-charge 
limited current  is a s  given by Chen: Suppose we have two infinite plane- 
paral le l  plates,  one of which emits par t ic les  and is at zero potential, and the 
other of which is perfectly absorbing and is at  a potential q,  as shown in 
Figure B- 1. 

B 

+ =O AFd-k X- + = +  
Figure B - 1  

Then, if  a species of particle with charge -e and mass m is emitted ' 
at ze'ro velocity at plane A, i ts  velocity at a position where the pottntial  is 9 
is given by 

where the assumption is made that the particle falls freely through the potential 
drop 9, i. e. , suffers no collisions or  other hinderance5 of a mechanical char-  
ac te r  in i t s  fall. 
x wi l l  be 

If the emitted current density is j e ,  the particle density at 

Poiseon's equation becomes 

16 



Multiplying by dx &I and integrating from x=O we have 

(B-4)  

dcp 
dx 0. 

10 the case  of space-charge limited current  flow (-) vanishes. Then we have 

Integrating from x=O t o  x=d we have 

or je is given by 

which is the Child-Langmuir 3/2 power law for space-charge limited current  
flow between two planes separated by a distance d with a potential rp between 
them. Obviously plane A corresponds to the plasma and plane B corresponds 
t o  the probe. 

Physically what i s  happening is as follows: Par t ic les  a re  emitted at 
plane A and a r e  accelerated toward plane B. 
from A to B. 
The s t ream of particles repels other particles trying to flow to the plane B, and 
a cloud of charged particles develops near plane A. 
and it  is what l imits the current. 

Thus a s t ream of particles flows 
Since all the particles a re  of the same sign, they repel each other. 

This cloud i s  the space charge 

17 



APPENDIX C DERIVATION O F  THE BOHM CONDITION 

Let us examine a gas  of electrons. Suppose it is being acted upon by 
an electric field E and a pressure  gradient VP In order  for the electrons 
t o  reach an equilirrium configuration, the force on a volume of electron gas 
must be zero. If n 

e' 

is the density of the electron gas at a point where the 
is the density where epq the force balance equation 

0' 
potential is e p ,  and eno 
is 

but we know that 

so that (C-1) becomes 

-n e E  - O P  = 0, (C-1) e -  e 

- E = -0cp and Pe= nekTe ( C - 2 )  

neevep-kT e e  On = O  

If we integrate (C-4) for the one-dimensional problem we obtain 

kT e ep = -4nn t c i ,  e e 

but since n = n  at ep =Po this becomes 
e o  

n 

e n 
e kT 

cp-cpo =e tn - 
0 

and thus ne is given by 

kT e ne = noe 

NOW let  us consider the ion current .  Let no be the ion density at the 
sheath edge and let vio be the velocity of the ions at  that point. 

18 
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density of ions entering the sheath is given by 
is continuous through the sheath, n v. must be $qb%l to n.v. where n. is 
the density at the point in the SheathOwhOerre the ion velocity i's 'vi. 

en v. . Since the ion current  

1 

n.v = n v (C-8) i i  o i o  

The kinetic energy of the ions at the sheath edge is given by 

-m.v? 1 = e p 0  
2 110 

m i s o  
where Cp 
energy ap any point in the sheath i s  given by 

is a constant chosen so that i t  is equal t o  2e , and the kinetic 

Zm.v? 1 = q c p  
1 1  

Thus vio and v. a r e  given by 
1 

and n. is given by 
1 

n. = n  - -  V io -ne 
1 0 v. 0 

1 

Poisson 's  equation is then given by 

(C-10) 

(C- 11) 

(C-12) 

(C-13) 

q(v - cpo) 

Te 
cc 1, n is given by e If we assume that 
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(C-14)  

1 
Let us examine T - ~ .  

r p - L -  1 [I - e ] =  -['- 1 (cp - r p q  
ZkT 

@ O  Icp, WO 
-ET- e 

K 
(C-15) 

Substituting into Poisson's  equation we obtain 

This can be rewritten as 

( C -  17) 
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1 t -& ] C 0, the solution of (C-17) for  (CP -Vo) wi l l  oscillate, and this 
e 

would mean that the sheath is unstable. 
sheath, namely 

Thus, we have a criterion for a stable 

- e > 0 for  stability 1 
2 Y O t  -q-- 

This can be written as 

mif'o for  a stable sheath. Since ecp, = , this is the same as 

m . 3  ~ C T  
1 10 e 
2 -  2 

->- 

(C-18) 

(C-20) 

o r  the kinetic energy of the ions at the sheath edge must be greater  than ZkT 1 
fo r  a stable sheath to exist. e 
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